JHSPH OpenCourseWare, Essentials of Probability and Statistical Inference IV
Johns Hopkins Bloomberg School of Public Health,
Baltimore, MD 21205,
Description:
Introduces the theory and application of modern, computationally-based methods for exploring and drawing inferences from data. Covers re-sampling methods, non-parametric regression, prediction, and dimension reduction and clustering. Specific topics include Monte Carlo simulation, bootstrap cross-validation, splines, local weighted regression, CART, random forests, neural networks, support vector machines, and hierarchical clustering. De-emphasizes proofs and replaces them with extended discussion of interpretation of results and simulation and data analysis for illustration.
Votes:38